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WATER-EXIT BEHAVIOR OF MISSILES

Part 1. Preiiminary Studies

by
J. G. Wough

Ond S e “'7; g B
i ._J:IE Sy

© G. W. Stdbstad
Underwater Ordnance Department

ABSTRACT. Water-exit launchings were made with a 2-inch-

diameter hemisphere-head missile at 60-fps nominal water-
exit velocity; launching angles of 15, 30, and 90 degrees with
respect to the horizontal; and different degrees of cavitation
ranging from nearly fully wetted flow to completely enveloping

cavitation,

Perturbations in missile pitch at water exit in-

creased with decrease in trajectory angle and the maximum
perturbations occurred under conditions of fully developed

cavitation.

From the results it is inferred that water-exit
perturbations will pose problems in service missile water-
exit technology.

The addition of a nose probe to measure cavitating missile

attitudes altered the water-exit perturbations and sometimes
causcd erratic cavities to form. An annular groove in the mis-
sile nosc at the zone of cavity separation stabilized the cav1ty
and allowed more consistent results to be obtained.
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A knowledge of missile water-exit perturbations that may obtain
under conditions of cavitation, and the validity of modeling parameters
for modeling these perturbations, have recently assumed importance
in practical application,

The data presented in this report indicate that a small-scale
missile is subjected to significant perturbations at water exit under
all conditions of cavitation and suggest that these perturbations will
pose problems in service missile technology. These data may bhe
used in the assessment of modeling parameters in further scaled
studies with larger missiles,

The study was made under Bureau of Naval Weapons Task Assign-
ment RRRE 07001/216-1/R009-01-001 during Fiscal Years 1960 - 1961,

The material presented here constitutes Part 1 of this report.
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INTRODUCTION

A knowledge of the water-exit behavior of missiles and of problems
associated with this behavior has recently assumed great importance in
national defense, yet little is known about the subject (Ref. 1). Available
data indicate that missile water-exit perturbations may take place under
conditions of fully wetted flow, and tests with service missiles indicate
that perturbations ds take place uhder conditions of cavitation. How-
ever, very little data are available on missile water-exit perturbatlons
that may obtain under varying degrecs of cavitation--conditions that
are likely to arisc in practical applications, and they are inadequate

for assessing the validity of the applicable modeling parameters.

From a structural-strength standpoint, the design of a missile and .
its internal components for water exit does not present the same prob-
lems as design for watcr entry, because the missile is emerging from
one_medium into another which is far more compressxble and has-much
lower density and viscosity, Hence, instead of an increase there will
be a more or less abrupt reduction of the forces that influence the mis-
sile in its water exit and subsequent air trajectory. For oblique water
exit this reduction of forces would probably be asymmetrical and caase

a refraction of the air trajectory and changes in the orientation and

angular velocity of the missile. The problem is complex. The water-
exit behavior of a missile will depend on many factors such as missile
shapc, ballistic paramecters, velocxty, trajectory angle, orlentatlon, .

and the cav;ty bubblec. » : '

The missile water-exit studics reported here are preliminary and
incomplete. They constitute the exploratory phase of a program whose
purpose is twofold: (1) to determine whether missile water-exit per-
turbations under conditions of cavitation are sufficiently lar ge to pose
problems in missile water-exit technology, and (2) to providdigata for

i subsequent program to asscss the validity of modceling parameters

in modcling missile water-cxit bechavior under conditions of cavitation.
In view of the present scarcity of such data, these preliminary data
arc ool interest, S
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EXPERIMENTAL PROGRAM
MISSILE AND LAUNCHING FACILITIES

The missile used in these studies was launched with and without a
nese probe. Its configuration with the probe is shown in Fig. 1, and its
parameters arc given in Table . The missile was made of black-

TABLE 1. Missile Parameters

Parameter Dimension
. . +0, 000
Diameter, in . . . . . . . 2.000 -0.001

Length,2in . . . . . . . 12.004 % 0,040

Mass,lb. . . . . . . . . 1,323-1.329 for ML 7 to 22
1,272 -1. 283 for all others

Distance from CG to
nose,d in .

a

. 50 for all except:

ML 710 42, 5. 60

ML 35, 5.40

ML 69 . 5,48
Moment of inertia,? Ib in® . L19-18. 21 for all except

ML 7 to 22, 35, 36, 34, 61
to £9, which were not re-
corded. They are believed
to be close to the figures
quoted above,

4 I.ength of probe not included,
About a transverse axis through the CG.

anodized Dural with longitudinal and transverse fiducial marks to facili-
tate reduction of the photographic data, The missile probe was made
of cylindrical bronze welding rod lightly sprayed with black lacquer,
and, unless otherwisc stated, its leading ecnd was carefully faced at
right angles to its axis. The probe was mounted in the missile head,
with deKhotinsky cement used to insurc rigid binding so that the probe
was accurately concentric with the missile axis, The probe was suf-
ficiently rigid that it did not bend during underwater trajectory and
water exit, but was pliable enough to deform without damage to the
missile when the missile struck a nylon fabric backstop, A new probe
was used for each launching. The other missile joints were sealed
with dental wax to prevent water leakage into the missile.

The missile was launched under fresh water in the Variable-Angle
Variable-Pressure Launching Tank (Fig. 2) in the Hydroballistics
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FI1G. 2. Variable-Angle Variable-Pressure Launching Tank., Pit
below tank provides space for launcher. Tank shown empty with -
backstop in position.
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" Laboratary, Naval Ordaance Test Station (NOTS), Paaadena; CAlif. In

this tank, missiles up to 2 inches in diameter can be launched under
water with a maximum velocity of about 90 fps. The launching angle
can be varied from 5 to 90 degrees with respect to the horizontal, and
the gas pressure over the water surface can be varied from 1. 5 to less
than 0.1 atmosphere absolute. The launcher is mounted on the base of
the tank and has an impelling piston extending into the tank through a
water- and gas-tight seal. The piston is concentric with the center line
of the tank and its motion is along the center line. A description of the
tank (adapted for water-entry studies) is given in Ref. 2.

The launching system was designed to launch the missile with no
angle of attack or pitch velocity and to minimize water flow due to
launcher action. The missile was held in a ventilated sleeve-type car-
riage mounted on the end of the launching piston. Upon actuation, the
piston was impelled forward by a pneumatic system outside of, and
sealed off from, the interior of the tank. After about 0.9 foot of for-
ward accelerated motion, the carriage-piston system was brought to a
stop in about 0.5 foot by a hydraulic buffering system and the momentum-
propelled missile emerged from the carriage and continued on its under-
water trajectory, The free-flight distance before water surface pene-
tration was at least 1 foot {i, ¢., one missile length)., The initial
launching velocily was adjusted to give a nominal missile velocity of
60 fps just befure waler exit,

The action of the launcher did not introduce any air, hydraulic
{luid, grcase, or other extrancous substances into the water, The
tank water as supplied from the high-pressure city mains was super-
saturated with air, Rapid de-aeration was accomplished by bubbling
air through it for at lcast onc hour at 0.1 atmosphere. Consequently,
the repeatable equilibrium condition existed during each launching;
diffusion of air into the cavity was minimized; and water-vapor, or
very nearly water-vapor, cavitation obtained, The degree of missile
cavitation during the underwater trajectory and at water exit was ad-
justed by varying the air pressure over the water surface, i.e., vary-
ing the cavitation number, The air pressures used in these studies
ranged from 0.1 to 1.0 atmosphere absolute.

In describing gas pressures and densities, it was found convenient
to define reference standards. Since the average ambient conditions
of temperature and pressure at the Morris Dam Torpedo Range (where
prototype tests may be made) and the Hydroballistics Laboratory at
NOTS approximated 20°C and 740 mm (29. 14 inches) of mercury,

l atmosphere was defined as 740 mm of mercury. Gas densities are
described in terms of a gas-density coefficient, p', which is the ratio
of the density of the gas at the temperature and pressure of the tank
atmosphere to that of dry air at 20°C and 740-mm pressure.

v b st kb pddlli il s
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... Sideview water=-exit data-were-obtained with a rotating-disk camera
and Edgerton-type stroboscopic flash lamps adjusted to give 19 expo-
sures at a frequency of 250 per second, i.e., a time interval of 4 milli-
seconds between frames. The range of missile positions over the
exposure sequence was adjusted by means of a time-delay apparatus
that triggered the flash lamps at an appropriate time after launcher
actuation. Typical rotating-disk camera {ilms are shown in Fig. 3,

4, and 5,

The fiducial marks for data reduction were fine white threads
mounted on the outside surface of the tank window at the normal projec-
tion of the tank {and launcher) center line in the plane of the window,
and at the intersection of the planes of the water surface and the window, :
Additional threads and black-and-white wedge-shaped tabs mounted on ]
the window provided the zero points required for measurement and cal-
culation of the data. The rotating-disk camera was positioned so that
its axis was normal to the plane of the tank window and passed through
the point of intersection of the threads representing theprojected water
surface and center line, The photographic data were reduced and plot-
ted as functions of time from water exit. The time of water exit is
defined as the instant at which the reference point on the missile nose
intersects the plane of the undisturbed water surface {Fig. 1), Figure 6 |
presents data from a typical launching and shows the quality of the data
obtained.

TEST CONDITIONS

In the selection of test conditions, certain assumptions and com-
promises had to be made. To begin with, the launching tank can
accommodate models no larger than 2 inches in diameter, which is
certainly small compared with present service missiles, Furthermore,
in order to determine, on the basis of small model tests, whether sig-
nificant service-missile water-exit perturbations would obtain, it is
necessary to assume, a Eriori, that one-to~one Froude and cavitation-
number scaling will be valid for modeling service-missile behavior if
Reynolds-number effects can be ignored. This assumption seems
reasonable but still has to be demonstrated, The validity of one-to-one
Froude and cavitation-number scaling for modeling missile water-exit
behavior under conditions of cavitation will be investigated in a later
program.

In order that the effects of non-modeling of the Reynolds number
be minimized without artificial turbulence stimulation, it is necessary
that both model and prototype underwater velocities be sufficiently high
that the Reynolds number for both will correspond to transition from
laminar to turbulent flow close to the nose. For prototype (service)
missgiles this restriction would offer no problem, but for a 2-inch-
diameter hemisphere~head missile, the critical Reynolds number would
probably correspond to a missile velocity somewhat below 60 fps (Ref. 3).
Therefore the velocity of the missile should be not less than 60 fps. On
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FIG. 3. Water Exit of Missile Without Probe Launched at 15-deg Angle.
Velocity at water exit, 56.7 fps; pressure, 0.1 atm.
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FIG. 4. Water Exit of Missile Without Probe Launched at 30-deg Angle.
Velocity at water exit, 58.7 fps; pressure, 0.1 atm.
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FIG. 5. Water Exit of Missile Without Probe Launched Vertically.
Velocity at water exit, 55.7 fps; pressure, 0.1 atm.
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the basis of Froude scaling, 60-fps water-exit velocity would cotres~
pond to 190 fps for a 20-inch-diameter prototype and more for larger
missiles. This is quite high in terms of present service-missile
velocities, but it is believed that the future trend will be toward in-
creased water-exit velocity, It is also believed that at lower water-
exit velocities, missile water-exit perturbations tend to increase,
Therefore, if significant perturbations are observed at the water-exit
velocities reported here, they are also likely to occur at lower veloci-
ties.

It was realized that fully wetted or slightly cavitating flow would
not offer any problem in obtaining underwater photographic data, but
the opacity and/or optical distortion of the cavity would prevent obtain-
ing such data from fiducial marks on the missile itself. Additional
difficulties would be introduced by obscuration due to the envelope of
water around the missile and the splash as the missile passes through
the water-air interface.

The use of a probe on the missile nose as shown in Fig. 1 would
solve the problem of obtaining data on missile position and attitude,
but it would have the disadvantages of making the missile nose atypical
from service-missile nose configurations and the hemisphere-head
configuration less tractable for water-exit theory studies. In conse-
quence, two series of water-cexit studies were planned, Thefirst series
would be conducted without a probe to investigate the water-exit pertur-
bations that might obtain with the typical and theoretically tractable
hemisphere head, The second series would be conducted with a prohe
to (1) obtain more accurate and reliable data on missile water-exit
behavior, (2) determine whether the probe caused significant deviations
in missile behavior, and (3) further develop the probe technique for
future water-exit studies.

DISCUSSION OF RESULTS

WATER-EXIT BEHAVIOR

A total of 71 launchings was made at trajectory angles of 15, 30,
and 90 degrees with respect to the horizontal and at various atmos-
pheric pressures over the water surface. The 15- and 30-degree con-
ditions were investigated both with and without the probe, and the
90-degree condition without the probe. Launching conditions are listed
in Tables 2- 6. At least two launchings were made at each different
condition. The water-exit velocities obtained during the 90-degree
launchings at air pressures above 0.2 atmosphere fell significantly
below the desired 60 fps. This was caused by an increase in the under-
water drag as the missile became more fully wetted (Fig. 7). As a
result, highcer launching velocities were used for the subsequent 15-
and 30-degree launchings.

14
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"TABLE 2. Water-Exit Launching Data
Hemisphere head missgile without probe. Trajectory
launching angle: 15 degrees.

Air Pres- | Initial |

ML sure in |Attitude,| ve,

No. | Tank, atm | deg® | fps F c | p | T
77 1. 00 15.3 55,0 [23.7 [0.685 [0.99 | 443.0
78 1. 00 14. 7 54,0 [ 23.4 [0.706 |0.99 |436.6
79 0.75 13.8 54.3 (23.4 {0,527 | 0,75 | 437.4
80 0. 75 14,5 56,5 | 24.4 | 0.487 | 0,75 | 455, |}
81 0.51 14, 8 56,2 [24.3 0,330 10.50 | 452.5
82 0.51 15,2 54,5 | 23,5 [0.351 | 0.50 | 438.8
182 0. 30 15.0 61.5 | 26.5 |0.158 | 0,30 | 496,5
186 0. 30 15.0 61.6 |26,6 |0.157 ]0,30[497.4
83 0. 20 15.8 60.0 |25.9 | 0,107 [0,20 |483,1
84 0.20 16,3 58.6 |25.3 |0.113 [0.20 [471.8
87 0.10 15.8 58.5 | 25.3 [0.049 [ 0.10 | 471.0
88 0.10 16.2 56.7 {24.5 | 0.052 |0.10 | 456.5

2 Attitude of missile measured when {oremnost point of
missile nose is 6 in. from the point of surface penetration,
TABLE 3. Water-kxit Launching Data

Hemisphere head missile with probe, Trajectorylaunch-
ing angle: 15 degrees.

Air Pres-| Initial

ML sure in | Attitude,| vg,

No. | Tank, atm deg?® | fps F o p' T
89 1,00 15.2 |58.0 |25.0 |0,616 |0.98 |468.3
90 1.00 15.4 |58.9 [25.4 }0.597 | 0.98 [475.6
91 0.75 15.0 [63.0 | 27,2 (0,388 [0.73 [509.6
92 0.75 14,6 57.6 | 24.9 (0,464 [0.73 | 465.9
93 0.51 15,0 |56.1 124.2 [0.327 {0.50 |453.6
94 0.51 15,2 161.9 |26.7 {0.268 |0.50 | 500.5
122 0.41 15.2 |58,7 |25.4 |0.237 {0.40 (474.1
123 0.41 15,2 |58.1 |25.1 [0.243 |0.40 |468.4
118 0.30 15.4 62.6 | 27.0 | 0.153 | 0,30 |504,6
119 0. 30 15.4 [59.5 125.7 10.170 [ 0.30 |479.6
95 0.20 15,2 59,0 |25.5 [ 0.106 |0.20 |477.1
96 0.20 15.9 66.2 |28.6 | 0.084 [0,20 |535.3
97 0.10 16,2 (63.3 [27.3(0.038 |0.10 |511.8
98 0.10 15,3 58.1 [25.1 [ 0,045 | 0.10 |469.8

& Attitude of missile measured when foremost point of
missile nose is 6 in. from the point of surface penetration,

15
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Hemisphefe head fnissﬂe without probe, Trajectory
launching angle: 30 degrees.

Air Pres-| Initial

ML sure.in |Attitude,| Ve, :

Ne. | Tank, atm| deg® | fps F T p' T
60 "1,00 | 29,9 |57,5]|24.8] 0.632[ 1.00 [462.5
69 1. 00 30.5 [57.2]24.7]0.637|0.99 [460.4
70 1,00 29.6 |[58.58]25.3| 0,609 1.00 |470.8
73 1.00 29.8 |56.0| 22,4]| 0.663] 0.99 |450.9
74 1,00 29,4 56,1 ] 24.2] 0.660/ 0.99 |451,7
67 0.75% 30,2 (58.0 | 25.0| 0.463 [ 0.75 | 466, 3
68 0.75 30,0 [57.3 24,7 0.475(0.7- [460.7
61 0.51 30.1 [60.5| 26,1 0.286| 0.51 [486.7
66 0.51 30,2 |58.2|25.1] 0.309] 0.51 |467.9
64 0. 20 30.0 [59.925.9| 0.109 | 0.20 | 481.6
65 0. 20 30.0 (60.4 26,1 0.107] 0.20 |485.6
62 0.10 30.0 |58.0 ] 25.0] 0.0501{ 0.10 | 466. 6
63 0.10 30.0 [58.0]25.0( 0.051 ] 0.10 [466.3
71 0.10 30.0 [58.7125.3| 0.049] 0.10 |472.4

8 Attitude of missile measured when foremost point of
micsile nose i6 6 in, from the point of surface penetration.

TABLE 5. Water-Exit Launching Data
Hemisphere head missile with probe. Trajectory
launching angle: 30 degrees,
Air Pres-| Initial
ML sure in |Attitude,| Ve,
No. | Tank, atm| deg® | fps F o p' T
100 1. 00 30.2 |58.7 |25.3 10,602 [0.99|473.8
101 1.00 30.2 55.2 {23.8 | 0,681 |{0.99 |445.5
104 0.75 30.2 61.6 [26.6 [0.406 1 0.73 | 497.9
105 N.75 30,2 [59.2 |25.6 |0.440 | 0.73 | 478.5
102 0.50 30,0 |63.5]27.4 |0.257[0.51 |512,5
103 0. 50 30.0 |65.5 |28.3 |0.24]1 (0.51]528.6
106 0.41 29.8 (58.2 (25.1 (0,239 0.40 |470.4
107 0.41 30.0 58.3 | 25.2 |0.239 [ 0.40 | 471.2
108 0. 30 30,0 [60.2 [26.0 [0.163 |0.30|486.5
109 0. 30 30,0 |60.6 |26.2 |0.161 | 0.30 |489.8
110 0. 20 30.2 59.3 (25.6 |{0.105 | 0.20 ]479.4
111 0. 20 30.0 |58.3|25.2 |0.108|0.20|471.3
116 0.10 29.8 54,7 [23.6 ] 0.055 | 0.10 | 440. 6
117 0.10 29.8 57.2 {24.7 [0.051 | 0.10 ( 460.8

2 Attitude of missile measured when foremost point of
missile nose is 6 in. from the point of surface penetration.
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TABLE 6. Water-Exit Launching Data

Hemisphere head missile without probe, Trajectory
launching angle: 90 degrees.
Ajr Pres-| Initial

ML sure in |Attitude,| v,
No. | Tank, atm| deg? fps F v p' T

9 1,01 90.0 44,21 19.1]1.076| 1,01 | 355,3
12 1.00 90.0 42,2118.2|1.169| 1.00§ 339.1
13 1,00 90.0 44.0| 19,0 1.076| 1,00 | 353.6
17 0.75 90.0 45,0 19.4] 0.769 0.75 | 362.1
18 0.75 90.0 44,0 | 19.0| 0.804( 0.75 | 354,1
19 0. 175 90,0 45,0 | 19, 0.769] 0.75 | 362.1

8 0.52 90.0 47.8 | 20.6 | 0.466 | 0,52 | 384.3
11 0.50 90.0 46.0] 19.9] 0.485| 0.50 | 369.8
14 0. 50 90.0 46.2 | 19. 0.4801 0.50 | 371.3

7 0.21 30.0 56.2 | 24.3]0.129] 0,21 | 451.8
15 0.20 90.0 55.0( 23.6)0.128] 0,20 442.6
16 0. 20 90. 0 54,31 23,410.132 0,20 | 437.0
10 0.09 90. 0 37.81 25,010,045 | 0.09 | 464.7
20 0.12 390.0 56,81 24,510,063 0,12 |457,1
21 0.12 90.0 55.51 24,0 0.066| 0.12 | 447.9
22 0.12 90. 0 57.51]124.8 | 0.065| 0.12 | 460.6
35 0.09 90.0P o
36 0.09 90. 0P

38 0.09 30.0b

2 Attitude of missile measured when foremost point of
missile nose is & in. from the point of surface penetration.

Used for calibration and attitude analysis.

17
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" Figures 8 to. l2are. composmte phetegr&phs meludmg aelected
frames from a launching at each test condition. The perturbation of
the missile flight at water exit shows clearly in these pictures, the
perturbation being dependent upon both underwater trajectory angle
and atmospheric pressure above the water surface (i.e., degree of
cavitation), The perturbation appears also to be influenced by the be-
havior of the cavity immediately prior to and during water exit. Thus
the cavity may provide a means of controlling the water-exit perturba-
tion,

Figures 13 to 17 show missile attitude, velocity, and distance
traveled as functions of time at trajectory angles of 15, 30, and 90 de-
grees. It should be noted that the attitude curves for Fig. 17 are plotted
on a larger scale than those of the other figures.

Addition of the probe to the missile nose caused an erratic cavity
to form during some of the launchings (Fig. 18), and altered the water-
exit behavior of the missile (Fig. 19 and 20), This erratic cavity be-
havior seemed to be correlated with deviation of the cavity separation
zone from its normal position. In general, it can be said that if an
erratic cavity was formed, the water-exit perturbation was amplified.
If a normal cavity occurred, the water-exit perturbation appeared to
be slightly suppresscd by the presence of the probe.

As right be expected, the miccile attitude is the parameter most
sensitive to water-exit perturbations. Figures 21 to 23 show missile
attitude at tail exit as a function of air pressure over the water surface.
Data from cach trajectory angle for probe and no-probe missiles are
presented in a single curve, At trajectory angles of 15 and 30 degrees
the maximum perturbation occurred at pressures of 0,1 and 0. 2 at-
mosphere where the missile was in a fully developed cavity at the time
of water exit. At 15 degrees the maximum perturbation occurred during
launchings of the probe-nose missile; at 30 degrees the maximum per-
turbation occurred without the probe. For both trajectory angles the
maximum perturbation was nose-up with respect to the underwater tra-
jectory. Nose-down perturbations tended to occur under conditions of
more fully wetted flow. For vertical water exit (90 degrees) there did
not seem to be a trend in perturbation at any atmospheric pressure,

The observed scatter in missile attitude was significantly less at 0.1 at-
mosphere, indicating more stability under fully developed cavitation,

At 0. 2 atmosphere the perturbation was still small at the time of tail
exit but became larger during subsequent air flight (Fig. 17), suggesting
that further random perturbations were caused by splash from the col-
lapsing cavity. Some of the scatter at the higher air pressures may
have been caused by transition from turbulent to laminar flow because
the water-exit velocities were undesirably low at these pressures.

A numerical prediction of prototype behavior cannot be made from

these data because the validity of Froude and cavitation-number scaling
has not been established, and other factors which may be important in

19

i
i
]
!

thiva,




%‘;_..--_.,- - - S e
| NAVWEPS REPORT 7735 L |
LR o et BSOS P —

-17.4 ~-5.4 6.6 18.6 30.6

| -17.9 -5.9 6.1 18.1 30, 42,1
‘ Time from water exit, ms

-17.4 -5.4 6.6 18.6 30.6 4

Time from water oxit, ms

FIG. 8. Water Exit of Missile Without Probe Launched at 15-deg Angle. Nomin

———

20




{a) 1 atm pressure in tank

“ater exit, ms

{b) 0.75 atm pressure in tank

ater exii, ms

18.6 30.6 42.6

ater exit, ms

t Probe Liaunched at 15-deg Angle. Nominal water-exit velocity 60 fps.




-13.8 -1.8 10.2 22.2 34.2

-17.1 -5.1 6.9 18.9 30.9

Time from water exit, ms !

-18.6 -6.6 5.4 17.4

Time from water exit, ms

FIG. 8. (Con



34.2 46.2

m water exit, ms

(¢) 0.20 atm pressurce in tank

9 30.9 42.9

m water cxit, ms

(f) 0.10 atm pressure in tank

17.4 29 .4 41.4

om water exit, ms
;

FIG, 8. (Contd.)

et

21

[rae—



- NAVWEPS REPORT 7735

1 . Partl
; -15.4 -3.4 8.6 206 32.63
«: Time from water exit, ms *‘_:‘
’ -15.5 3.5 8.5 20.% 32.
Time Trom water exit, ms !
:
!
|
i
j -16.0 -4.0 8.0 20.0 32.0
: Time from water exit, ms
FIG. 9. Water Exit of Missile With Probe Launched at 15-dej
* i

22







e B 4
i 1
- 3
i i
g i 1
H 3
i = 5
i .
{ G T s
- | :
: !
= i

ki il B g - T - ——!;
-14.5 -2.5 9.5 21.5 33.5% :
Time from water exit, ms :

-13.5 - 1.5 10.5 22.5 34.5

Time from water exit, tis

- 1641 -4 7.6 19.6

Time from water exit, ms

-17.5 -5.5 6.5 18.5
Time from water exit, ms

FIG. 9. (Cont



NAVWEPS REPORT 7735
Part 1

45.5

Ot

(¢} 0.30 atm pressure in tank
.5 46.5

(f) 0.20 atm pressure in tank
31.6 13.6

(g) 0.10 atm pressure in tank

30.5 42.5

3. 9. (Contd.) 23



. NAVWEPS REPORT 7735

N

-13.1 ~1.1 10.9 22.9 34.9

Time from water exit, ms

\ -15.8 -3.8 8.2 20.2 32.2 44 2

Time from water exit, ms

-15.4 -3.4 8.6 20.6 32.6 44 .6

Time from water oxit, ms

FIG. 10. Water Exit of Missile Without Probe Launched at 30-deg Angle
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FIG.11. Water Exit of Missile With Probe Launched at 30-deg

26



13.3 25.3 37.3

ime from water exit, ms

10.6 22.6

ime from water exit, ms

10.6 22.6 31.6

Jime from water e¢xit, ms

Missile With Probe Launched at 30-deg Angle.

{h) 0.75 atm pressure in tank

(¢) 0.50 atm pressurce in tank

Nominal water-exit velocity 60 fps.

Y




B : O S U S

12.6 24.6

Time from water exit, ms

36.6

(d) 0.40 atm pressurc in tank

-14.

i~
1

o

D

-12.3 -0.3 1.7 23.7 35.7 47.7

Time from water exit, ms

(f) 0.20 atim pressurce in tank

. FIG. 11. (C



i

NAVWEPS REPORT 7735

-r2.2 -0.2 11.8 23.8 35.8 47,8

Time from water exit, ms

(e) 0.30 atm pressure in tank

i 1.3 13.3 25.3 37.3 da 3
Time from water cxit, 1mis
(g) 0.10 atim pressure in tank \
FIG. 11. (Contd.) 1

27



NAVWEPS REPORT 7735

Part 1

- i Kihar DL TE—T1
i U T e

GLE

que}l ut aanssoad wie | (e)

s numvn.u T AT AN EOhw DL T,

c'el <l S0t - S 7l

28



135

‘sdy g A110C[24 3IX3-I31eM TEUIUUON
-A[Ted1119 A paydune ] 9qoxd INOYIIM STISSIN JO IIXY iajem "21 "Dl

Nuel ur oanssodad we g0 (9)

SU ‘1IN Jojem Wol] dwWl]

T
£Le €°¢7¢ el ¢l L 01~ L77-

Muel ui oanssoad wie { ()

S “IIXKO J01EAM WOdJ QWL

S'Le a'q¢ G'¢l c'1 $° 01 - 977

oy,



m | Mquel ut sanssoaxd wge gg g (3)
“ s “umunmu I3lem CLOh.w OEmrH.
) S 9¢ S FT 71 0 ¢ 1l- g'ge-
M
.,_,z._.._,,.:..._....._...............E - .
, LB




S

T T

NAVWEPS REPORT 7735

e

0 0t

6'87

("pwod) 21 ‘DId
quuy ut canssoad we grog (o)

¢

SUECTING Qe tHod ) o g

0791 o't 0°01-

quel ut sanssoad uge gz 0 (p)

LR R .“mz.v L TE2AN ﬁCCLM RASE N

7 091 0'F 6'orI-

29



NAVWEPS REPORT 7735

Missile Without Probe Launched at 15-deg Angle.
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FIG. 18. Erratic Cavity Caused by Addition of Probe to Missile.
(ML 97, velocity 63. 3 fps, pressure 0.1 atm.)
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modeling—{i-e;gas density, etc) were not scaledduring these tests.

However, it is not unreasonable to assume that perturbations of com-
parable magnitude will exist during the water exit of prototype missiles.

For those who wish to use these data for making qualitative pre-
dictions of prototype missile behavior on the premise that modeling
will obtain with one-to-one Froude and cavitation-number scaling, the
following model-prototype relationships may be used (Ref. 4 and 5).

(1) N = dm/dp

(2) Im = Mp

(3) mm = A mp

(4) Im = N1,

(5) Pgm - MPgp

(6) sm = Asp

(7) tm(sm) = VXtp(sp)
(8) Smltm) = Asp(tp)
(9) Vi (tm) = VAvp(tp)
(10) Om(tm) = 6p(tp)
(11) NAOm(tm) = Bp(tp)

Since prototype missiles will be launched with 1 atmosphere air
pressure over the water surface, pgp = 1 atmospherc and \ will be
fixed by the air pressure over the water surface, pgm, of the particular
model launchings considered. The prototype missile parameters and
water-exit behavior can then be determined.
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PROBE STUDIES

It was desirable to develop a technigue for obtaining consistent
behavior with a probe in the missile nose without modifying the head
configuration. Consequently, a study of missile and cavity behavior
and flow over the missile nose was made, using various probe con-
figurations and launching conditions (Tables 7 and 8). All launchings
were made at a 15-degree trajectory angle, where previous tests had
shown inconsistent missile behavior likely to occur.

Since variation in missile-surface condition could be responsible
for erratic cavities (Ref., 6), two uniform missile~-surface conditions
were considered for study: a perfectly clean hydrophilic surface to

TABLE 7. Description of Probes Used for Special
Probe Studies

A. Standard probe, Cylindrical flat head probe
as originally used (Fig. 1) but degreased.

|

B. Similar to type A except hollowed to held
dye paste,

C. Similar to type A except coated with dye paste.

D. Nylon fairing probe.

E. Cylindrical probec with 60-degree included
angle cone head.

F. Similar to type E except slotted to hold dye
paste.

G. Conical probe tapered to a point with slight
_ convex curvature (pseudo-Lyons form).

H. Similar to type G except coated with dyec paste.

I.  Conical probe.
J. Similar to type I except coated with dye paste.

K. Similar to type A except that a groove was
cut into the missile nose (Fig. 26).
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TABLE 8. Water-Exit Launching Data

Hemisphere head missile with special probes. Trajectory launch-
ing angle: 15 degrees.

b= ST R N e, ..

Air Pres~ | Initial
ML sure in  [Pitch8g)| ve, Type of
‘ No. Tank, atm | deg fps F T p' T Probe?
’ 135 0.10 15.3 [ 56.9| 24.6]0.050 [ 0.10] 458.6| A
| 136P 0.10 15,0 A
137P 0.10 15. 0 A
‘ 139P 0.10 15,0 A
} 1482:¢ 0,20 15,0 B
1470¢ 0.20 15.0 C
168P: € 0.10 15,0 D
169P:¢€ 0. 10 15,0 D
134 0.10 15,7 | 63.1| 27.2|0.041|0,10|508.6| E
151b,c 0.20 15.0 E
153b,¢ 0.20 15.0 E
1620 ¢ 0. 20 15,0 F
140, 0,10 16,7 | 62.7] 27.1{0.041(0.10] 305.6| G
L1 0.10 15.0 G
142 0.10 15,0 G
1652 ¢ 0.20 15,0 H
1492’C 0. 20 15.0 i
1502 € 0. 20 15.0 I
166> €| 0.20 15.0 3
172bs € 0.10 15. 0 . Ad
1730 € 0.10 15.0 | oo | .. Ad
175 0.10 15.0 | 56.5| 24.4 ] 0.047 | 0.10| 728.5| Ad
176 0.10 15.0 | 55.9| 24.1| 0.048 | 0.10] 720.7| Ad
188b 0. 10 15. 0 . . . K
189b 0.10 15. 0 K
190 0. 10 15.7 | 58.5| 25.3 | 0.046 | 0.10 | 472.1 K
191 0. 10 15.1 | 58.5| 25.31 0.046 | 0.10 | 472. 1 K
192 0.10 15.0 | 57.6 | 24.6 | 0.049 | 0,10 | 459, 1 K
193 0.10 15.7 | 58.5| 25.3| 0.046 | 0.10| 472.3| K

8 Table 7 gives details of probe.
Used for visual observations only.
€ Photographed at 1,000 frames per second.
Similar to type A probe but length = 1,27 + 0.03 inches. Water
in tank contained aerosol.
€ Trial launching made to develop dye technique.
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suppress cavitation, and a uniformly greasy hydrophobic surface to aid
cavitation. The production of perfectly clean surfaces is inconsistent
with the conditions under which models and full-scale missiles are
tested. Therefore it was decided to maintain a uniformly hydrophobic
surface, which can be obtained by handling the missile to coat its sur-
face with oil from the skin (Ref. 7). Four launchings were made with
the missile and standard probe carefully degreased and then regreased
by handling just prior to launching. Although this technique did not
prevent the formation of erratic cavities, it was retained as a precau-
tion in all subsequent water-exit launchings.

It appeared possible that reduction of water-surface tension might
prevent or decrease erratic cavity formation because this did eliminate
stripping of the water-entry cavities formed by a spherogive-head mis-~
sile (Ref, 8). Thus four launchings were made with the standard probein
water whose surface tension was reduced to approximately 28.4 dynes/cm
by the addition of less than 0, 1 percent by weight of Aerosol OT (Ref. 9)
to the water. Reducing the surface tension increased the incidence of
erratic cavities,

Three probe configurations were studied in addition to the standard
one: a cylinder with cone head of 60 degrees included angle, a quasi-
cone with slight convex curvature, and a cone. Reducing the bluntness
of the probe also increased the incidence of erratic cavities.

The [low over the missile nose was made visible with nigrosine
dyc, the paste being used to fill slots in the probes. In the case of the
standard probe a slotted tube of the same external dimensions was used
instead of a rod. During the launching and subsequent underwater tra-
jectory the dye streamed from the slot, marking the flow along the probe
and over the missile nose, Minute vortices were visible in the dye trace
and a zone of separation seemed to occur at the base of the probe
(Fig. 24). Fairing the probe to fill the approximate zone of separation
improved the cavity significantly (Fig. 25), and indicated that the erratic
cavity formation was being caused by disturbances in the flow introduced
by separation of the probe boundary layer. Using a fairing to eliminate
erratic cavities is not feasible because it is impossible to match the
zone of separation over the entire trajectory. Moreover, a fairing
would defeat the original purpose of the probe, namely, to obtain ac-
curate missile attitude data.

These studies indicated that it would be necessary to mask any
random perturbation introduced by the probe boundary layer, and force
regular separation of the cavity in the proper separation zone. In order
to accomplish this, some modification such as roughening or grooving
the missile nose was necessary., It was decided to cut an annular groove
in the nose where the cavity would normally tend to separate, i.e.,
where the hemisphere subtends an angle of about 78 degrees (Fig. 26).
More than 100 water-exit launchings of the missile with grooved head
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and standard probe indicate that the technique is successful in elimi-
nating erratic cavities, but randomness in missile perturbation still

persisted. These launchings will be discussed in a subsequent part
of this report.

CONCLUSIONS

Water-exit launchings were made with a 2-inch-diameter hemisphere-
head missile at 60-fps nominal water-exit velocity, launching angles of
15, 30, and 90 degrees with respect to the horizontal, and different de-
grees of cavitation ranging from nearly fully wetted flow to completely
enveloping cavitation. The following conclusions are drawn:

1. The missile is perturbed at water exit under all degrees of
cavitation, The perturbations increase with decrease in trajectory
angle, the maximum perturbations occurring under conditions of fully
developed cavitation. From these results it is inferred that water-exit
perturbations will pose problems in service-missile water-exit tech-
nology.

2. The addition of a nose probe alters the water-exit perturbations
of the missile and sometimes causes erratic cavities to form. An an-
nular groove cut in the missile nose at the zone of cavity separation
stabilized the cavity but did not prevent random psrturbations from
occurring.
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F1G. 24. Dye Trace From Slotted Probe Marking Large Zone of
Separation on Missile Nose. (ML 148.)
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FIG. 25. Stabilization of Cavity by Nylon Fairing on Missile Nose. (ML 168.)
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NOMENCLATURE
d Diameter of missile body, in.
F Froude number at water exit, F = ve/Ndg
g Acceleration of gravity, f{t sec” &
1 Moment of inertia of missile about any transverse axis through
the CG, lb in%
{1 Distance from nose to CG of missile, in.
m Mass of missile, lb
Pc Sum of the gas and vapor pressures in the cavitation bubble
acting io keep the bubble open, 1b ft=2 or atmospheres
Pg Atmospheric pressure, 1b {t=% or atmospheres (standard atmos-
pheric pressure = 740-mm mercury pressure)
R Reynoldc number, R = vd/y
s Missile water penetration measured along trajectory from point
of water exit, ft
S Surface tension of water, dynes cm-=1
t Time from instant of missile water exit, sec
v Velocity of missile, ft sec™ !
0 Missile attitude in trajectory plane and measured with respect
to horizontal, positive in the sense of nose-up rotation
B, Attitude of missile measured when foremost point of missile nose
is 6 in, from point of surface penetration
A  Modeling scale factor, \ = dm/dp
v Kinematic viscosity, ft2 gec~l
§ Trajectory angle of missile, deg. Path angle with respect to
horizontal plane, positive in climb
p' Ratio of the density of the gas at the temperature and pressure of
the tank atmosphere to that of dry air at 20°C and 740-mm Hg
pressure :
Pg Density of gas, slug ft=3
py Density of water, slug g3 -
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¢ Cavitation number at water surface, o = (pg - pé)/%pwv'e
T Weber number, T = v/NS/pyd
SUBSCRIPTS
e Water-exit condition
m Model missiles
P

Prototype missiles
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